Function reference
-
prepare_data()
- Prepare data - Step 1
-
process_data()
- Process data - Step 2
-
process_nquire()
- Use nQuire's Data
-
denoise_data()
- Denoise Data
-
Bclean()
- Remove noise with the beta distribution
-
sim.ind.BB()
- Simulate Allele Counts for Single Individual - Beta-Binomial Distribution
-
sim.ind.BB.tau()
- Simulate Allele Counts for Single Individual - Beta-Binomial Distribution with Overdispersion and Error
-
sim.ind.simple()
- Simulate Allele Counts for Single Individual - Simple Approach
Basic Mixture Models
Wrapper functions to run model selection for diploids, triploids, tetraploids, pentaploids, and hexaploids.
-
quackNormal()
- Model Selection - Expectation Maximization - Normal Mixture
-
quackNormalNQ()
- Model Selection - Expectation Maximization - Normal Mixture (nQuire)
-
quackBeta()
- Model Selection - Expectation Maximization - Beta Mixture
-
quackBetaBinom()
- Model Selection - Expectation Maximization - Beta-Binomial Mixture
More on Mixture Models
Wrapper functions for model selection, running specific sets of mixture models, and bootstrap replication.
-
quackit()
- Model Selection - Based on BIC or Log-Likelihood
-
bestquack()
- Model Selection - Expectation Maximization - Choose your distribution and type
-
quackNboots()
- Bootstrapping - Expectation Maximization - Choose your distribution and type
-
emstepN()
- Expectation maximization - Normal Distribution
-
emstepNU()
- Expectation maximization - Normal and Uniform Distribution
-
emstepNA()
- Expectation maximization - Normal Distribution
-
emstepNUA()
- Expectation maximization - Normal Distribution
-
emstepB()
- Expectation maximization - Beta Distribution
-
emstepBU()
- Expectation maximization - Beta and Uniform Distributions
-
emstepBB()
- Expectation maximization - Beta-Binomial Distribution
-
emstepBBU()
- Expectation maximization - Beta-Binomial and Uniform Distributions
-
estepB3()
- E-Step for Expectation Maximization - Beta + Beta + Beta Distribution
-
emstepB3()
- Expectation maximization - Beta + Beta + Beta Distribution
-
alphabetacalc()
- Calculate Alpha and Beta from Mean and Variance
-
alphabetacalctau()
- Calculate Alpha and Beta from Mean, Tau, and Error rate.
-
alphabetacalcvec()
- Vector-based - Calculate Alpha and Beta from Mean and Variance
-
alphabetacalctauvec()
- Vector-based - Calculate Alpha and Beta from Mean, Tau, and Error rate.
-
muvarcalcvec()
- Variance calculation from Mean, Tau, and Sequencing Error
-
process_rcpp()
- Data Preparation - Matrix Filtering
-
nQuire_reformat()
- Data Preparation - Use nQuire's Data
-
setconvert()
- Calculate Variance from Mean, Tau, and Sequencing Error
-
resample_xm()
- Calculate Alpha and Beta from Mean and Variance